This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2743898, IEEE

Transactions on Visualization and Computer Graphics

Imagining Replications: Graphical Prediction & Discrete
Visualizations Improve Recall & Estimation of Effect Uncertainty

Jessica Hullman, Matthew Kay, Yea-Seul Kim, and Samana Shrestha

Abstract—People often have erroneous intuitions about the results of uncertain processes, such as scientific experiments. Many
uncertainty visualizations assume considerable statistical knowledge, but have been shown to prompt erroneous conclusions even
when users possess this knowledge. Active learning approaches been shown to improve statistical reasoning, but are rarely applied in
visualizing uncertainty in scientific reports. We present a controlled study to evaluate the impact of an interactive, graphical uncertainty
prediction technique for communicating uncertainty in experiment results. Using our technique, users sketch their prediction of the
uncertainty in experimental effects prior to viewing the true sampling distribution from an experiment. We find that having a user
graphically predict the possible effects from experiment replications is an effective way to improve one’s ability to make predictions
about replications of new experiments. Additionally, visualizing uncertainty as a set of discrete outcomes, as opposed to a continuous
probability distribution, can improve recall of a sampling distribution from a single experiment. Our work has implications for various
applications where it is important to elicit peoples’ estimates of probability distributions and to communicate uncertainty effectively.

Index Terms—Graphical prediction, interactive uncertainty visualization, replication crisis, probability distribution.

1 INTRODUCTION

There is an increasing interest in using experimental results to esti-
mate effects in many scientific fields, including the size of the effect
and how reliable it is. This movement runs counter to a more conven-
tional focus on simply detecting effects (e.g., through tests for statisti-
cal significance), which can encourage overinterpretation of spurious
or practically insignificant effects. Visualizations and other data repre-
sentations are important for helping authors and readers alike to move
toward estimation. In particular, a “replication crisis” occurring in
many scientific fields [34, 52, 54] suggests the need for new ways to
help users think through replication uncertainty—the expected distri-
bution of effect sizes if an experiment were run again.

As an example, imagine a typical results report from a controlled
experiment. The author describes an observed effect, say a mean re-
duction of 19 mm Hg in the systolic blood pressure of a sample of
10 heart attack survivors who were given a new drug, compared to 10
heart attack survivors who were not. The author also describes uncer-
tainty around the effect, say a confidence interval from 8§ to 30 mm Hg
around the mean effect. Understanding replication uncertainty means
being able to reason about how often potential replications of the study
would see an effect of at least the same size, half the size, etc. Whether
the audience consists of lay people presented with study results by the
media, or scientists and other experts consulting findings in scholarly
publications, accounting for replication uncertainty is a critical part of
interpreting science [34, 52, 54].

Unfortunately, many typical uncertainty representations, like error
bars, make it easy to ignore or misinterpret uncertainty [4, 36]. For
example, many scientists misinterpret a 95% CI as indicating a re-
gion in which the mean of a replication is expected to fall 95% of the
time [30]. As an alternative to requiring explicit training on statisti-
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cal rules, asking a person to represent or predict information can be
powerful ways to improve statistical reasoning through active learn-
ing [6, 57]. For example, asking people to graph statistical informa-
tion like the risk associated with a disease in a discrete (frequency)
format can lead to more accurate probability inferences [15, 49, 60].
Alternatively, asking learners to make predictions about a data set,
such as in pre-test, may increase their ability to learn from subsequent
representations of that data [19]. Though typically associated with
educational contexts, active learning strategies are used to elicit user
predictions about statistical models characterizing uncertain processes
in recent interactive visualizations in the media [1, 9, 32, 38]. The
act of predicting, for example by predict the party majority in voting
outcomes for various states [38], may prompt deeper consideration of
assumptions affecting the outcomes and the meaning of the visualized
data [41].
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Fig. 1. Discrete and continuous elicitation interface used by participants
in our study to predict replication uncertainty.

In this paper, we ask, Can graphically predicting uncertainty in sci-
entific experiment results improve one’s ability to recall the reliability
of those findings, and to make predictions about the reliability of new
experiments’ results? We examine whether non-statisticians, who are
most likely to misunderstand experimental uncertainty, can be helped
by graphical prediction. Our primary contribution is a controlled study
used to show how outcomes related to a user’s awareness of repli-
cation uncertainty are impacted by being asked to predict the un-
certainty first using an interactive visualization. We find that users
who graphically predict replication uncertainty and see their predic-
tion against the true sampling distribution in one experiment can more
accurately complete a transfer task in which they must estimate repli-
cation uncertainty for a new experiment.

Our second contribution is to identify the impact of different vi-
sual representations of probability on how well a user can recall
and estimate how uncertainty impacts reported effects. Consider-
able prior work shows that frequency formats for probability informa-
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tion, but outside of classic Bayesian reasoning problems [8, 21, 22,
45, 60], few studies examine the effects of using frequency formats
to visualize uncertainty. We evaluate the difference between discrete-
outcome visualizations (Fig. 1 left) versus continuous visualizations
(Fig. 1 right) of a probability distribution. We find that while discrete
outcome visualizations do not necessarily improve a user’s ability to
estimate uncertainty in the effect of a new study, users who interact
with visualizations comprised of a small number of outcomes (20) can
better recall the uncertainty in a reported effect from an experiment.
This suggests that discrete visualizations of probability distributions
with limited numbers of outcomes may provide a useful format for
remembering statistical information among non-experts.

To enable the empirical contributions of our study, we first con-
ducted a design space exploration of interactive visualization inter-
faces for predicting uncertainty. Our design space exploration de-
velops and evaluates twelve interfaces that allow users to “draw”
probability distributions, including both discrete and continuous vi-
sualization approaches, extending prior work in probability elicita-
tion [28, 51]. We summarize high level guidelines for graphical pre-
diction interfaces for distributions from our results.

Our results demonstrate new possibilities for communicating un-
certainty in experimental science more effectively. They suggest the
power of graphical prediction and discrete-outcome visualizations for
interactive uncertainty visualization approaches that incorporate the
user’s prior knowledge to improve lay understanding of the reliability
of statistical results. This is a crucial enterprise for any interested in
improving public understanding of—and trust in—science.

Our results also pave the way for future research exploring the po-
tential for interactive uncertainty visualizations to improve expert rea-
soning about experimental uncertainty, goals of the transparent statis-
tics [39] and RepliCHI movements [66, 67]. Finally, our results have
impliciations for graphical probability elicitation for Bayesian data
analysis and other applications.

2 BACKGROUND & HYPOTHESIS DEVELOPMENT

We summarize probability distributions that can be used to charac-
terize replication uncertainty. To generate hypotheses, we survey re-
search in two related areas: (1) teaching statistical reasoning, and (2)
interacting with uncertainty visualizations.

2.1 Statistical Background: Four Distributions

Inference from experimental data involves understanding subtle differ-
ences between characterizations of uncertainty. Four different proba-
bility distributions can be used to describe the uncertainty in the mean
observed effect from an experiment. First, by running an experiment,
a scientist seeks to infer the population distribution, the true dis-
tribution of the values that a variable can take on in a population of
individuals (Fig. 2.1). The true sampling distribution, the true distri-
bution of a statistic obtained through drawing all possible samples of
a given size from the population, models expected uncertainty due to
the sampling process (Fig. 2.3).

With perfect knowledge of the world, we could exactly specify the
population (true) mean and true sampling distribution. The observed
sampling distribution (Fig. 2.6) and the and the replication predic-
tion distribution (Fig. 2.7) represent our best guesses for the true
mean and true sampling distribution respectively, based on the im-
perfect knowledge that can be obtained through experimentation. The
observed sampling distribution assumes that the sample mean is repre-
sentative of the true mean, while the replication prediction distribution
accounts for the fact that the sample mean will not be equal to the
true mean. Fig. 2 describes the typical usage of these distributions in
experimental science.

2.2 Tools for Teaching Statistical Reasoning

How to teach people to make inferences about various types of prob-
ability distributions, as well as randomness and sampling in gen-
eral [24, 23] is a primary focus in statistics education. One approach
to teaching statistical reasoning claims that explicitly training people
on statistical rules, like the law of large numbers, can improve their

inferences [20, 50]. However, reformers of statistical pedagogy have
argued that encouraging active reasoning is more beneficial than rule
memorization [23], and proposed alternative techniques focused on
active learning through analysis and simulation [5, 47, 59].

Sampling distributions (Fig. 2.3, Fig. 2.6), are notoriously diffi-
cult for people to reason about. Researchers have documented com-
mon misinterpretations among students (e.g., the sampling distribution
should look like the population distribution) [11]. Others have stud-
ied errors made by experts when interpreting statistical representations
based on sampling distributions [4, 30]. One active learning approach
to teaching statistics advocates using simulations to improve under-
standing of sampling distributions [11, 46]: e.g. letting a user specify a
sample size and population distribution and observe the sampling dis-
tribution [18, 19, 58]. The implication is that actively interacting with
the process that produces the distribution improves students’ abilities
to reason about distributions in general (i.e., transfer effect).

Prediction may be a particularly beneficial form of interaction for
understanding uncertainty. DelMas et al., for example, find that a sim-
ulation was not enough to leave students with accurate conceptions of
sampling distributions [19]. Based on a belief that contradictory evi-
dence is required to change one’s beliefs [53], the researchers devel-
oped a prediction-based activity. Students first made estimates about
population distributions in pre-test problems, then ran a simulation on
the same distributions. Students who did the pre-test plus simulation
showed additional gains on posttest questions relative to those who did
not first make guesses about the distributions. While not applied to un-
derstanding uncertainty, Kim et al. [41] find that predicting data prior
to viewing a visualization, and viewing the gap between one’s pre-
dictions and the visualized data, can improve one’s short term recall
of the data. Motivated by these results, we examine whether mak-
ing predictions about uncertainty (i.e., probability distributions) using
interactive visualization interfaces can enhance statistical reasoning,
including the ability to transfer one’s understanding of uncertainty in
one setting to a new setting.

2.3 Visualization Interactions to Understand Probability

Prior work in visualizing uncertainty has tested various representations
of probability distributions with novices, indicating various errors in
reading the visualizations (e.g., [14, 33, 40, 65]). Common represen-
tations of probability information like error bars have also been shown
to lead to erroneous predictions among experts who have been trained
to read them [4, 30]. For example, researchers and other “experts”
frequently assume that the boundaries of a 95% confidence interval
are meaningful, such that the population mean would fall within the
boundaries 95% of the time if the study were replicated [30]. In ac-
tuality, the confidence level 95% is restricted to describing confidence
in the procedure (if the study were replicated, 95% of the time the
confidence interval would contain the population mean). However,
the majority of existing uncertainty visualization studies focus on how
well users can read probability information rather than how well they
can reason with the information (e.g., by making predictions about the
implications of uncertainty in presented data or new data, which we
refer to as a transfer effect).

Actively constructing visual representations may be a more power-
ful strategy for helping people understand uncertain processes. Natter
and Berry [49] found that participants who were asked to portray the
size of a risk on a bar chart were more accurate and satisfied in their
probability estimates. Cosmides and Tooby [15] presented people with
the base rate of a disease and false positive rate of a test in order to
study Bayesian reasoning. Participants who used a graphical display
to fill in the information more accurately estimated how many peo-
ple had the disease than those who viewed filled-in graphs. Sedlmeier
and Gigerenzer [60] conducted a controlled study of tutorial programs
for Bayesian problems. Programs that instructed users on how to cre-
ate frequency representations of probability information led to better
short-term and long-term Bayesian reasoning compared to a rule train-
ing program. More recent studies indicate that graphical interfaces are
advantageous for eliciting a person’s subjective probability distribu-
tion [28, 27, 62]. We evaluate whether having a user “draw” their
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Fig. 2. A depiction of distributions relevant to replication uncertainty, including those based on perfect knowledge of the world (left) and those

derived from samples obtained in experimentation (right).

estimate of a probability distribution using an interactive visualization
interface helps them understand uncertainty in experiment results. As
a preliminary design space exploration, we contribute a number of dis-
crete outcome and continuous visualization interfaces for prediction.

Other visualization interactions that are thought to help uncertainty
comprehension do not require that the user construct a visualization.
For instance, a large body of research indicates that simply interact-
ing with probabilities presented in discrete, frequency formats (e.g., 7
out of 10) is easier than cognitively processing the same information
in a probability format (e.g., 70%) [26, 29]). However, the vast ma-
jority of this work addresses classic Bayesian reasoning tasks, which
involve a narrow range of tasks (e.g., identifying false positives for a
test given conditional probabilities, e.g., [8, 21, 22, 45, 60]). Some
recent work applies this “discrete visualization advantage” hypothe-
sis to the presentation of univariate probability distributions, finding
that discrete-outcome visualizations can lead to better inferences par-
ticularly when small numbers of outcomes are used [33, 40]. Again,
however, these works focus on how well users can read probabilities,
rather than how well they can transfer probabilistic reasoning to new
data sets. We examine whether discrete visualizations of probability
distributions help users understand uncertainty in experiment results
in terms of recall and transfer ability.

2.4 Formulating Study Conditions & Hypotheses

Several prior studies point to the benefits of active reasoning tasks for
understanding statistical concepts. In particular, active reasoning in
the form of prediction tasks and tasks that require constructing visual-
izations appears promising. Hence we test how well users who com-
plete a graphical prediction task in which they graphically specify a
probability distribution can recall and predict uncertainty in experi-
ment results compared to users who do not use graphical prediction.

The prior work also suggests that presenting discrete-outcome visu-
alizations can help people express and reason about probability. How-
ever, discrete formats also reduce precision in communicating a dis-
tribution. We are interested in whether a discrete visualization that
summarizes a distribution using frequency can have benefits for re-
calling or reasoning about uncertainty in potential replications of an
experiment. Hence we vary whether a discrete-outcome versus a con-
tinuous visualization of a probability distribution is used by subjects
in our study. Crossing graphical prediction with visualization results
in four conditions:

* Graphical Prediction - Discrete: The user predicts the sam-
pling distribution for a presented experiment using a discrete vi-
sualization prior to seeing the true sampling distribution.

* Graphical Prediction - Continuous: The user predicts the sam-
pling distribution for a presented experiment using a continuous
visualization prior to seeing the true sampling distribution.

¢ Baseline - Discrete: The user views the true sampling distribu-
tion using a discrete visualization.

* Baseline - Continuous: The user views the true sampling distri-
bution using a continuous visualization.

Graphical prediction represents a form of implicit training on how
to interpret the sampling distribution that is eventually visualized for
the user, since the user is not formally trained on how the sampling
distribution relates to the (observed) sample data. Instead, the act of
prediction is likely to draw their attention to where their initial guess
was wrong, prompting active reasoning. However, some researchers
have advocated explicitly training users on the rules related to statis-
tical processes like sampling distributions [20, 50]. We include con-
ditions in which users complete a rule training task on sampling dis-
tributions as a means of comparing an alternative interactive training
task to graphical prediction:

* Rule Training - Discrete: The user is presented with informa-
tion about sampling distributions and a hypothetical distribution.
She is asked to calculate the sampling distribution standard devi-
ation using an interactive form. She then views the true sampling
distribution using a discrete visualization.

* Rule Training - Continuous: The user completes the same
training task. She then views the true sampling distribution using
a continuous visualization.

2.4.1 Hypotheses

Informed by the prior work, we consider how our study conditions
will affect several proxies for a user’s awareness of uncertainty: the
user’s ability to recall the uncertainty in a presented experiment’s re-
sults (which is likely to reflect related factors like their attention [17]
and depth of processing [48] of the uncertainty) and the user’s ability
to transfer what they inferred about replication uncertainty to make
predictions about a new experiment.

¢ H1 (Graphical prediction effect): Graphically predicting what
will happen if an experiment is replicated prior to seeing the true
sampling distribution will lead to more accurate recall of that
distribution and improved accuracy in estimating the replication
uncertainty for a new experiment in a transfer task.

* H2 (Discrete visualization effect): Viewing the true sampling
distribution for an experiment using a discrete representation will
lead to more accurate recall of that distribution and improved ac-
curacy in estimating the replication uncertainty for a new exper-
iment in a transfer task.

¢ H3 (Rules training effect): Completing an explicit instructional
task about sampling distributions will lead to more accurate re-
call of that distribution and improved accuracy in estimating the
replication uncertainty for a new experiment in a transfer task.
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3 PRELIMINARY STUDY: INTERFACE SELECTION

Only a handful of prior works demonstrate interfaces that enable a
user to sketch a distribution (e.g., [27, 28]. We therefore conducted a
design space exploration of graphical prediction interfaces in order to
select the discrete and continuous interface for our study.

3.1 Design Development and lteration

We aimed to develop designs that exhibited three properties we be-
lieved would make graphical prediction interfaces effective and ac-
cessible to novices: they should require little training, be expressive
enough to capture users’ intuitions about probability, and encourage
accurate reasoning about probability.

These properties focused our design space exploration. The goal
of requiring little training led us to create interfaces that rely on di-
rect manipulation to reduce abstractness. The goal of expressiveness
is motivated by delMas’s proposal that evidence contradictory to one’s
beliefs is needed to motivate a change in beliefs when learning [53]. If
a user can express their honest best guess, they may be more likely to
benefit from seeing their prediction against a true distribution than if
the interface forces symmetry and other normative properties of com-
mon distribution types (e.g., Gaussian). Finally, the need for an inter-
face to encourage accurate reasoning about probability inspired our
development of multiple prediction interfaces that use discrete out-
come visualization, based on evidence that frequency formats can im-
prove statistical reasoning [26, 31]

To further organize our design space exploration, we first brain-
stormed interaction techniques (clicking, brushing, dragging to select
outcomes), selection scopes for an interaction (apply to the specific
outcome that was interacted with, or apply to all outcomes below, i.e.,
filling down a column of a discrete-outcome histogram), and default
states for outcomes (outcomes appear only when interactions are trig-
gered, or outcomes appear by default but their positions must be modi-
fied). We combined these three factors where it was feasible (e.g., con-
tinuous interfaces lack outcomes and therefore have only one selection
scope and default state). We also varied the number of outcomes used
in discrete-outcome interfaces, to explore the trade-off between fewer
outcomes, which require fewer interactions to build a distribution and
have been shown in prior work to be easier for participants to read [40]
and relate to [7], and more outcomes, which increase expressiveness.

3.1.1 Discrete Outcome Visualization Interfaces

W e developed two types of paint-outcomes-by-
dragging interfaces. Both types first present the user
with a grid of empty circles representing outcomes. A
standard paint-by-dragging interface allows users to fill
in circles with color by dragging the mouse over each. For all discrete
interfaces (with the exception of the rolling-balls interfaces), a warn-
ing message appeared to the left of the drawing area when the user
reached the total number of outcomes. All subsequently added out-
comes turn red until the total number being used is within the limit.
A s a more efficient version of the paint-by-dragging
interaction, we also created a fill-down paint-by-
dragging interface that allows users to drag over a cir-
L cle in the grid to fill that circle and all circles below it
in the column, with either 20 or 100 outcomes.
W e developed a pull-up interface that allows the user
to drag up handles that are equally spaced along the x-
axis to add outcomes. The user is given either 20 or 100
total outcomes, with 10 or 20 handles along the x-axis.
R ather than requiring the user to add or fill outcomes,
See the rolling-balls interface first presents a uniform dis-
.t tribution of outcomes. The user drags the 20 (shown
adidien left) or 100 outcomes between bins to form the distri-

bution.
[ | F inally, we also implemented two versions of one
of the few distribution sketching interfaces evaluated
in prior work: the balls-and-bins interface evaluated
L in [28]. We created a 20 ball version and a 50 ball ver-
sion to mvestlgate the impact of the number of outcomes. The user

and the reasoning benefits of discrete formats.

clicks an up arrow (A) or down arrow (57) below each of 10 bins to
either add one or remove one outcome (ball) at a time to that bin.

We used a 50 ball version rather than a 100 ball version as in [28],
because early users found it to require too much clicking.

3.1.2 Continuous Visualization Interfaces

W e created several continuous probability interfaces
to explore a second potential trade-off, between the
more familiar representation of a probability distribu-
» tions using a continuous format (e.g., a density plot)
We developed a
continuous-line-drag interface that allows a user to drag from the left
to the right side of the axis to shape a line into a probability density
function (pdf). As the line is created, 11 handles equally-spaced along
the x-dimension are added to the line. The user can later adjust the

shape of the curve by dragging the handles.
W e developed a continuous-pull-up interface, in
which a user is presented with 10 equally spaced han-
‘ dles along the x-axis. The user creates a pdf by drag-
ging up the handles. The interface smooths the curves

the user draws using cardinal spline fitting.
We did not label y-axes with probability values in the interfaces,
based on evidence that thinking about relative probabilities is easier
for people than thinking about absolute probabilities [51].

3.2 Evaluations with Users

We evaluated the 12 graphical prediction interfaces first by asking
volunteers in our labs to try the interfaces using think-aloud proto-
cols. After further design iteration we deployed an online survey on
Mechanical Turk (MTurk). MTurk samples can provide comparable
quality to university or other online samples but tend to be more de-
mographically diverse [10]. We recruited 80 U.S. based workers with
approval ratings of 95% or above to help ensure quality [63]. Each
worker was paid $2.00 for their participation.

Our goal was to identify
general patterns in prefer-
ences and how well people
could use different inter-
faces, to inform the choice
of discrete and continu-
ous interface for our study.
Each participant was asked
to use six total interfaces to
reproduce the same refer-
ence distribution (a normal
probability density func-
tion with with pu=10 and
o0=2). Each assigned inter-
face appeared on a separate
screen, with the reference distribution pictures to the left (Fig. 3). The
participant was asked to replicate the reference distribution as best she
could using each interface. Interfaces were randomly assigned and
counterbalanced, but to aid comparison, each participant was always
assigned both the high resolution (e.g., 50 or 100 outcome) and low
resolution (20 outcome) version of the same technique (e.g., balls-and-
bins, rolling-balls, etc.). We also paired the two continuous probability
interfaces.

In addition to gathering text feedback, we also quantitatively mea-
sured participants’ performance with the interfaces by capturing re-
sponse time, how long (in sec) the user spent replicating the distribu-
tion; accuracy, how close the user’s drawing of the distribution was
to the reference distribution as log Kullback-Leibler (KL) divergence,
an information theoretic measure of the similarity between two dis-
tributions [42]'; and satisfaction, how satisfied the user was with us-
ing the interface to replicate the distribution (obtained using a 100 pt

Recreate this distribution

ekt Crimges hirndbes asel
ol e b et i nrbruten
corening 20 il s

Foms b [l Bl i,

Fig. 3. Interface used in evaluating
graphical prediction techniques (pull-up
20 outcomes shown).

I'We used a discrete version of the reference distribution for scoring; we
show in supplemental material that this calculation is not distinguishable from
reasonable alternatives.
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slider from Not satisfied to Very satisfied after completion of all six
task screens).

3.2.1

As our design space study was conducted primarily to inform the de-
signs used in our reasoning study, we report high-level results here
only and refer the reader to the supplemental material for further de-
tails

2. The trends we report are based on participants’ text comments
and the three dependent measures we collected.

Continuous probability interfaces outperform discrete. Overall,
participants were reliably more satisfied with the continuous interfaces
compared to discrete interfaces we tested (increase of 20/100 points,
95% PI: [8,33]). They may also be faster in many cases (taking 0.71 x
the time, 95% PI: [0.48x, 1.02x]) and more accurate (-0.52 change in
log(KL), 95% PI: [-1.22, 0.23]). 3

Less outcomes reduces time to draw distribution. For discrete in-
terfaces, we tend to observe lower response times with fewer outcomes
(50- and 100-outcome interfaces take 1.6x the time of 20-outcome in-
terfaces, 95% PI: [1.2x, 2.1x]).

More outcomes does not lead to higher accuracy. We assumed
that more outcomes would enable more accurate replications of the
reference distribution; however, our results do not support this. We
see comparable accuracy with more outcomes (change in log(KL) of
-0.11, 95% PI: [-0.68, 0.53]).

Pull-up discrete interfaces lead to higher accuracy. Both pull-
up discrete interfaces performed relatively well in terms of response
times, satisfaction, and accuracy. To compare the pull-up interfaces
to the other discrete interfaces, we ran a mixed effects model imple-
mented in glmer2stan [43] for each of the three measures. Mixed ef-
fects models are commonly used to account for repeated measures
from the same subject, which is specified as a random effect. We
specified interface type and order as fixed effects. We specified the
balls-and-bins 50 outcomes interface as the reference group. We find
that the pull-up 20 outcomes interface performs similarly to the balls-
and-bins 50 from the prior work, both of which are the most accurate
discrete interfaces (though not reliably so; difference of log(KL) of
-0.04, 95% PI: [-0.37, 0.29]).

These results suggest that the continuous pull-up interface is the
more effective of the continuous interfaces; we therefore select this
as the continuous interface in our study. For our discrete interface,
while the pull-up interface performs comparably to the balls-and-bins
50 interface, the discrete pull-up interface more closely mirrors the
interaction of the continuous pull up interface. We therefore select the
pull-up 20 interface in order to have the fewest differences between
conditions (apart from the discrete or continuous representation).

Results

4 STUDY DESIGN: REASONING ABOUT UNCERTAINTY

‘We conduct a study to test how well users who complete a graphical
prediction task can recall and estimate uncertainty in experiment re-
sults compared to users who do not use graphical prediction (H1). We
vary whether a discrete-outcome versus a continuous visualization of
a probability distribution is used by participants in our study (H2). We
also include a rules training condition as an alternative form of ex-
plicit instruction on sampling distributions (H3). Fig. 4 shows the six
conditions.

Our study presents all Training
participants with a descrip- None | Implicit | Explicit
tion of a Siﬂgle instance . Discrete | Discrete | Discrete

Discrete .
None Predict Rules

of a hypothetical experi-
ment, in the form of sam-
ple statistics (mean, stan-
dard deviation, number of

Continuous|Continuous|Continuous
None Predict Rules

E_ Continuous

Fig. 4. Study conditions.

2Supplemental material is also at: https:github.com/jhullmanuw/imagining_
replications_infovis2017 DOI: 10.5281/zenodo.836886

3We report percentile intervals, or quantile credibility intervals, a Bayesian
analogue to a confidence interval [44].

observations). All partici-

pants see the same instance

of the hypothetical experiment, which we sample from a larger set of
experimental results that we simulated (Fig. 5).

4.1 Measuring Understanding of Replication Uncertainty

As a first measure of participants’ awareness of uncertainty, we con-
sider how accurately the user of a experimental report can recall a
reported effect with uncertainty. Recall of the effect and uncertainty
is likely to impact how they incorporate the findings into future judg-
ments (e.g., of related studies, or in daily life). Specifically, we exam-
ine how accurately a user can recall a presented sampling distribution.
A graphical recall task asks participants *What would happen if this
experiment were replicated many times?’ Re-creating the true sam-
pling distribution that she was shown is the most accurate response a
participant could give. All participants use an interface that matches
the visualization format with which they viewed the true sampling dis-
tribution (discrete or continuous).

We also inquire about the same distribution by asking participants
to complete a text recall task consisting of text probability questions.
Accurately answering text probability questions provides evidence of
the strength of a participant’s mental representation of the true sam-
pling distribution, as translating information between modalities re-
quires one to appropriately abstract properties of the original repre-
sentation [16].

Another measure of participants’ understanding lies in their ability
to transfer what they have learned about uncertainty to new situations.
We designed a transfer task that describes an instance of a second
experiment in a different domain and asks participants *What would
happen if this study were replicated many times?” All participants
use a graphical interface (either discrete or continuous, depending on
their condition) to predict this distribution. This task is best described
as near case transfer based on the similar format for the presenta-
tion of the second experiment (e.g., short narrative description with
sample statistics) [56]. However, participants will perform better on
this task when they abstract the relationship between sample statistics
and a sampling distribution from the first experiment presentation, so
the transfer task also represents one proxy for general learning about
distributions. The replication prediction distribution (Fig. 2) repre-
sents the best prediction a participant could make in the transfer task
given only a sample mean and standard deviation; because the sample
statistics are unlikely to exactly represent the population parameters,
the replication prediction distribution takes into account the fact that
the true population mean will not be exactly the sample mean, and so
is wider than the observed (or sample-based) sampling distribution,
which would not be a well-calibrated prediction. We derive the repli-
cation prediction distribution after the method described by Spence et
al. [64] for producing predictive intervals for replications. This dis-
tribution is equivalent to a Bayesian replication prediction distribution
for the sample mean in an exact replication, if an uninformed prior
were used for the analysis of the first experiment.

The study procedure is shown in Fig. 5. We interleave the presenta-
tions of experimental results and tasks to make sure that the recall task
is sufficiently challenging: participants read about the second exper-
iment in between viewing the true sampling distribution for the first
experiment and doing the recall task. Those in the Baseline condi-
tion read the experiment information and, as a “placebo” interaction,
retype the sample statistics prior to viewing the true sampling distri-
bution. To control for differences between participants’ levels of prior
familiarity with interactive visualization, we include an initial training
screen for all participants which provides basic instructions on how to
draw a distribution with the graphical interface that they are assigned.
Finally, we also utilize the Berlin numeracy test so that we can account
for the effect of participants’ a priori statistical literacy levels [13]. All
experimental stimuli are available in supplemental materials.

4.2 Study Stimuli: Experiment Domains

Our study presented participants with information about two fictional
scientific experiments from two domains: animal behavior (A) and
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Intro & Read between sample and samppHng || | | statistical EREB% Draw predicted distribution if Recall what distribution of Exp.
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Draw predicted distribution of |—| istribution + Predicti Discrete  Continuous Discrete  Continuous
effects if Exp. A is replicated
many times. ——
Discrete Continuous
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Intro & Tutorial Read About Exp. A Training View ling Distrib y Test Read About Exp. B Graphical Transfer Graphical & Textual Recall

All participants are
trained on howto  experiment has been
use a graphical replicated a large
interface to sketcha (e.g., infinite) number

distribution (for the of times. Exp. A
graphical recall and represents one
transfer tasks). sampled replication.

All participants are
assigned to one of three
forms of training on
how to interpret a
visualized sampling
distribution.

We assume an
to either a discrete or
continuous visualization;
those in the graphical
prediction condition view
the same format they used
to make their prediction.

All participants are assigned Al participants
take the Berlin

We assume a second
experiment in a

We test participants understanding
of the relationship between sample

We test participants ability to
recall the replication uncertainty

Numeracy Test  different domain has  data and replication uncertainty by in Exp. A by asking them to
to measure been replicated a asking them to predict the graphically and textually describe
statistical large number of times.  distribution of effects if Exp. Bis the distribution of effects if Exp.
literacy. Exp. B represents one replicated many times. A is replicated many times.
sampled replication.

Fig. 5. Depiction of study procedure. Participants are assigned to one of three types of training in how to read a visualization of a sampling
distribution (Baseline, explicit training on rules for deriving a sampling distribution, and implicit training via graphical prediction), and one of two
visualization formats (discrete and continuous). All participants are later tested on their understanding of replication uncertainty in a transfer and a

graphical and text recall task.

computer science (B). Both experiments were based on actual exper-
iments ([12] and [3], respectively). For the rat activity experiment
(A), participants were given the mean increase in activity and stan-
dard deviation of the increase among 40 rats given a stimulant versus
a placebo in a within-subjects design. In the engineer productivity ex-
periment (B), participants were presented with the mean difference in
the productivity of 8 engineers who used two programming languages
consecutively in a within-subjects design.

Both experiments described elaborate domain-specific measures (of
activity in rats, and of productivity in software engineers). We inten-
tionally chose these measures to reduce the chance that participants
would apply prior knowledge in any of the tasks.*

4.3 Participant Population

Because we wanted to study how our interventions affect a general
sample of non-statisticians, we posted the study as a single HIT on
Amazon’s Mechanical Turk, open to U.S. workers with an approval
rating of 95% or above. Workers could only participate once. The
reward for the HIT was $2.50. Participants were eligible for a total
bonus of $2.20, including $0.10 per question within 10% of the true
answer for the four Berlin numeracy test questions and 8 text recall
questions and an additional $0.50 each for the recall and transfer tasks
if the elicited distribution had small (0.30 pr less) KL divergence with
the appropriate correct distribution. The average bonus earned was
$0.80.

We advertised the HIT for 60 workers per condition. We determined
sample size with a prospective power analysis that used pilot results
from a mixed effects model identical to that we report for the text
recall task to simulate our study design with varying sizes. We chose
the lowest sample size that provided at least 80% power.

5 STuDY RESULTS: REASONING ABOUT UNCERTAINTY
5.1

362 workers completed the HIT. Counts per condition were between
59 and 64 as a result of workers completing the HIT after it timed out
(6 workers) or pressing the back button, which resulted in failures to
record data (4 workers dropped).

Workers completed the HIT in an average of 1404s (0=688s). Time
to completion per condition ranged from 1222s (continuous predict) to
1554s (discrete predict). The average worker got 2 out of 4 answers
correct on the Berlin numeracy test (0=1.4; range: 1.78-2.1), with
a distribution comparable to prior statistical literacy benchmarks on
AMT [13]. Full demographics are reported in supplemental material.

Data Preliminaries

4Future work might examine how prior knowledge impacts replication pre-
dictions relative to (say) a Bayesian norm, but we wished to leave out the impact
of expert knowledge in this initial work.

5.2 Analysis Methods

We analyze the data using several approaches. As a primary modeling
approach for both the recall and transfer tasks in which participants
draw distributions, we use Bayesian implementations of mixed effects
linear regressions in the rethinking package for R. To quantify the dif-
ference between the participant’s response and the correct distribution
in the recall and transfer tasks, we again use KL divergence, which
accounts for differences in the location and shape of the distributions.
Rather than running only a single model to examine the mean error
(in log KL divergence) of a participant’s distribution relative to the
correct distribution, we leverage the flexibility of the Bayesian im-
plementation to run two-part models that differentiate mean error (f;
overall how accurate are participants’ response distributions by condi-
tion?) and dispersion (y; is there more variance between participants’
accuracy in some conditions?). Both mean effect and dispersion are
important for understanding the potential for the different conditions
we tested to improve statistical reasoning: a large effect is desirable
(larger ), but so is a reliable effect across participants (lower y).

The first submodel we run for the recall and transfer tasks regresses
the mean effect (B coefficients) in KL divergence on dummy variables
denoting discrete visualization, graphical prediction task, and rules
training. We include the score on the Berlin numeracy test and the in-
teraction between discrete visualization and graphical prediction. We
mean center the Berlin numeracy test score to improve interpretability.

The second submodel address variance levels in conditions by re-
gressing the dispersion (y coefficients) of each effect (8 coefficients)
in log space on the same set of variables. This submodel allows us
to examine whether some conditions result in more varied behavior
between participants.

For both submodels, we use the same discretized reference distribu-
tion for both the discrete and continuous conditions to calculate KLD.
This choice avoids penalizing users of discrete visualizations for the
lower amount of precision a discrete interface affords. However, this
choice may bias results in favor of discrete visualization users. We
confirmed all main effects that we report are robust to multiple alter-
native KLD calculation methods, including changes to the format of
the of the reference distribution and response distributions (see sup-
plemental material).

Using Bayesian models also enables us to build in prior expecta-
tions for the effects we examine. We build in weakly-informed priors
of mean effects and dispersion for each condition. We specify identi-
cal Gaussian priors centered on 0 for each effect (8; standard deviation
of 5), and for each dispersion (7; standard deviation of 2.5).

We report results as the distribution of posterior estimates of each
effect for each submodel (Fig. 7A and Fig. 9A; violin plots depict these
distributions). All effects are relative to a participant in the Baseline
Continuous condition with an average score on the Berlin numeracy
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test. We avoid reporting p-values and instead interpret the posterior
estimates by looking at the degree to which 95% Percentile Intervals
(reported in text) overlap with O (indicating the possibility of no ef-
fect). We also use the posterior estimates to derive the expected cell
means (i.e., the expected mean and standard deviation of the log KL
error for each condition) and plot these values in Fig. 7B and Fig. 9B
violin plots.

Because specific differ-
ences in KL divergence
can be difficult to under-
stand on an intuitive level,
Fig 6 depicts how log
KL is affected by loca-
tion and variance. We also
present distribution plots
of the bias in the mean
and the standard deviation
of participant’s response
distributions in the recall
(Fig. 7C and D density
plots) and transfer tasks
(Fig. 9C and D density
plots). These plots pro-
vide a more concrete look
at how much participants in different conditions overestimated versus
underestimated the mean and standard deviation of the correct distri-
bution.

To analyze the text recall results, where each participant answers
multiple questions, we use a mixed effects model in glmer2stan [43].
We regress the absolute error in participants’ responses (reported as
probabilities) on the same set of dummy variables (fixed effects) —
discrete visualization, graphical prediction task, and rules training—as
well as the mean-centered Berlin numeracy test score and the interac-
tion between discrete and predict as fixed effects. We include subject
and question number as random effects. We plot posterior estimates of
effects in Fig. 8A and expected means by condition in Fig. 8B.

reference
distribution

log(KLD)
0

Fig. 6.
sizes in this paper, this plot shows log(KL
divergence) for distributions with vary-
ing means and SDs relative to a ref-

To aid interpretation of effect

erence distribution. Distributions closer
to the reference distribution have lower
log(KLD).

5.2.1

‘We compare the graphically recalled distributions from participants to
the true sampling distribution for the first hypothetical experiment in-
volving rat activity levels. The true sampling distribution conveys the
population parameters; a participant cannot be more accurate than to
provide this distribution when asked about the distribution of replica-
tion effects. We are interested in the mean of each posterior distribu-
tion for f3, indicating the normative error for that condition, as well as
the variance (y), indicating how much participants differed from one
another in their error rates in that condition. Fig. 7A presents the dis-
tributions of posterior estimates for the mean effect () and dispersion
(v). Fig. 7B presents the distributions of expected values of the effect
and dispersion by condition. To determine whether apparent effects
are reliable, we look to whether the 95% PIs for the estimates (not
pictured) overlap with 0.

We see a clear improvement in KL divergence from being in a dis-
crete condition (f: -0.59, 95% PI: [-1.04, -0.19]), in line with H2. We
see little effect of being in a graphical prediction condition, or being
in a rules training condition, in contrast to H1 and H3. Getting a 1
point higher score on the Berlin numeracy test correlates with a small
but reliable improvement to KL divergence (f: -0.11, 95% PI: [-0.18,
-0.05]). We observe a highly variable interaction effect from being in
both a discrete and graphical prediction condition (8: -0.41,95% PI: [-
0.83, 0]), suggesting that for some, predicting may be more beneficial
combined with a discrete-outcome visualization.

Being in a discrete, predict or rules condition results in higher esti-
mated variance (f3: 0.95, 0.23, 0.59; 95% PI: [0.74, 1.14], [0.03, 0.42],
[0.41, 0.76], respectively). Being in the discrete predict condition low-
ers variance (f3: -0.42, 95% PI: [-0.77, -0.15]); however, the practical
implications of this reduction in variance are questionable given the
higher variance from being in either discrete or predict.

To gain further insight into how participants’ response distributions

Graphical Recall Task

Model Results : Graphical Recall Task

Mean Log(KLD) Log(SD) of log(KLD)
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Fig. 7. Results of the graphical recall task. Violin plots depict the dis-
tributions of posterior estimates of effects (A) and expected effects by
condition (B), where error is measured as log KL divergence. Density
plots (C, D) compare the means (C) and standard deviations (D) of par-
ticipants’ recalled distributions to those of the true sampling distribution
(black line at 0) and sample distribution (red line).

differed from the true sampling distribution, we examine the average
difference between the means and standard deviations of participants’
response distributions and the true sampling distribution. Fig. 7C and
D depicts density plots for both forms of error by condition. Though
less visible for the discrete predict condition, which had greater vari-
ance than both other discrete conditions, more participants in the dis-
crete conditions produced distributions with means very close to the
population (true) mean. Expected absolute error for the mean of a
participant’s response distribution ranged from 13.3 to 17.4 (o: 20.1-
32.8) for discrete conditions, and 21.3 to 26.4 (o: 19.1-25.8) for con-
tinuous conditions. The density plots indicate a slight tendency to
overestimate the mean among participants in continuous conditions.
All participants tended to overestimate variance when recalling the
true distribution.

The density plots for the discrete predict group are noticeably more
peaked than those in other conditions. This is partially due to a rela-
tively large proportion of participants in this condition that perfectly
recalled the true sampling distribution: 19.7% of 61 participants. A
number of participants (18.6% of 59) in the discrete rules training con-
dition and discrete no predict condition (24.6% of 57) also perfectly
recalled the true sampling distribution, though outliers flatten these
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density curves for both measures. Four other participants across the
discrete conditions perfectly recalled the shape of the distribution, but
incorrectly positioned the distribution. Many others (11.9% of 177)
recalled the distribution with one or two outcomes misplaced. These
results suggest that discrete representations that use a small number
of outcomes have an advantage for facilitating the encoding of distri-
butional information to memory via shape.

On the other hand, despite undergoing a training task that explicitly
provided formulas for calculating the standard deviation of the sam-
pling distribution and for allocating density given this value, partici-
pants in the rules training conditions do as poorly or worse than other
conditions in accurately recalling the standard deviation.

5.2.2 Text Recall Task

As expected, the text recall task resulted in noisier estimates than
graphical recall. Mean absolute error in participants’ responses to the
text probability questions ranged from 14.7 to 34.8 (6=20.8-31.8).

Examining the posterior estimates of mean effect and dispersion
(Fig. 8 bottom), only the Berlin numeracy test score reliably predicts
lower error (-4.19, 95% PI: [-5.33, -3.05]). Being in a discrete, predict,
rules, or a discrete*predict condition may also reduce error, but these
estimates are not reliable.

5.2.3 Graphical Transfer Task

To score participants’ responses to the graphical transfer task, we cal-

distribution. Across conditions, most participants underestimated the
mean. The density plots indicate bimodality in responses, where some
participants in each condition correctly identified the best location on
which to center their predicted distribution (i.e., the reported sample
mean) while other participants did not. It is notable that errors tend to
be in the same direction. Upon examining the data and interface more
closely, we suspect that many participants may have chosen to locate
their predicted distribution near the center of the x-axis range, which
ranged from -2.5 to 2.5. Doing so would cause these participants to
underestimate the mean of the replication prediction distribution by
about 0.7, in line with the pattern in the density plots.

The density plots of signed differences in standard deviation show
different patterns by condition. Participants in both graphical predic-
tion conditions show a tendency to underestimate the standard devia-
tion. The standard deviation of the replication prediction distribution
is greater than that of the observed sampling distribution by a factor
of at least /2. Hence, participants in the graphical prediction condi-
tion show a bias toward underestimating the standard deviation in the
direction that would be expected if their estimates were closer to the
sampling distribution for the new study.

Model Results : Graphical Transfer Task
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variance (Fig. 9B).

To better understand which of the relevant distributions (Fig. 2) par-
ticipants’ predictions most resemble, we ran identical Bayesian re-
gressions with dependent measures of KL divergence relative to the
true sampling distribution for the programming languages study, and
to the observed (data) distribution of the study. We observe slightly
greater improvement in KL from prediction and discrete representa-
tions against both alternative reference distributions, suggesting that
participants are not differentiating sampling and replication prediction
distributions (results available in supplemental material).

Fig. 9 also depicts density plots of the signed difference between the
means (Fig. 9C) and standard deviations (Fig. 9D) of the participants’
predicted distributions and the Spence e al. replication prediction

these probabilities from the true probabil- e ___ 1

ities according to the true sampling distri- Participant's

bution. Predicted continuous_none continuous_predict continuous_rules
5tDev

E a o5 i s [ (X3 i os 0 os 1

Fig. 9. Results of the graphical transfer task. Violin plots depict the
distributions of posterior estimates of effects (A) and expected effects
by condition (B), where error is measured as log KL divergence. Den-
sity plots (C, D) compare the means (C) and standard deviations (D) of
participants’ predicted distributions in the transfer task to those of the
replication prediction distribution (blue line at 0) as well as the true sam-
pling distribution (black line) and sample (orange line).
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6 DiscussioN AND FUTURE WORK

Our design space exploration and informal evaluation of graphical
prediction interfaces indicated that participants tend to prefer and
produce accurate distributions more quickly with continuous vi-
sualizations of probability distributions. However, our controlled
experiment on statistical reasoning instead points to advantages of
discrete-outcome visualizations for recall of a distribution, adding to
the body of work indicating reasoning benefits of discrete visualiza-
tions for Bayesian reasoning [26, 31, 60], specifying population distri-
butions [28], and probability extraction [33, 40]. A discrete-outcome
visualization improved participants’ graphical recall of the population
sampling distribution, providing partial support for H2. We suspect
that discrete-outcome visualizations are advantageous for recall
because they reduce the distribution to a small number of out-
comes that can be remembered via shape. To our knowledge, this
property of discrete-outcome visualizations has not been discussed in
the literature. However, the fact that better recall is not also seen on
the text recall task suggests that this memorability effect may be su-
perficial, not extending to tasks that require modality translation. We
suspect that some participants were able to accurately remember the
shape and location of the distribution but without necessarily under-
standing its meaning (e.g., that each outcome represents 5% of repli-
cations).

Discrete visualizations did not help, however, with predicting repli-
cation uncertainty of a new study in a new domain. Instead, using
discrete visualizations led to worse accuracy in our participants’ esti-
mates. Itis possible that the high variance in performance with discrete
visualizations that we observed both in the recall and transfer tasks
helps explain this result: some participants may not have understood
the meaning of the individual outcomes.

Our study results provide partial evidence for H1: graphical pre-
diction before seeing the true replication uncertainty in one study
leads to more accurate predictions of replication uncertainty of a
new study in a new domain. Again, however, the implications of
this result are complex. While reliable, the effect was variable be-
tween participants; some participants may not have benefited. Ad-
ditionally, we saw no clear comparative advantage for prediction on
recalling the true sampling distribution. Only discrete-outcome visu-
alizations appear to help with recall. It is possible that the memory
advantage of discrete-outcome visualizations dominates any effect of
prediction on recall. We do observe that graphical prediction, when
combined with discrete-outcome visualization, reduces variance in
users’ performance for recall and transfer tasks, though the practi-
cal implications of this effect are difficult to reason about. It is possible
that the prediction task focuses participants on the meaning of the rep-
resentation, so that they benefit slightly more from a discrete format.

We find no evidence that explicit training on sampling distributions
improves recall nor transfer (H3). It is possible that more thorough
training, with personalized feedback and multiple practice problems,
is needed to see improvements.

6.0.1

Our study examined whether there are benefits to drawing a distribu-
tion and viewing discrete-outcome visualizations in the form of short
term recall improvements and more accurate predictions of the replica-
tion prediction distribution for a new task. Future work should explore
longer term recall benefits, and corroborate the rather variable predic-
tion effect through replications.

Additionally, our transfer task design may have emphasized the
sample statistics over the experimental description by preventing par-
ticipants from returning to the description as they made their predic-
tion. Future work should explore how graphical prediction and dis-
crete visualizations impact new predictions that require more qualita-
tive assessment of experimental features, as well as other “far case”
transfer tasks [56].

While we accounted for general statistical reasoning ability (as
measured by the Berlin test) in our analysis, our work did not ex-
amine specific differences in how effective graphical prediction tasks
or discrete-outcome visualizations are for helping people of different

Limitations

prior experience levels to make more accurate judgments. Addition-
ally, spatial abilities, which we did not measure, are known to be cor-
related with mathematical ability (e.g., [2]) and may influence use of
a visualization interface for probability distributions.

6.1 Future Work: Graphical Prediction Applications
6.1.1 For Engaging Visualization Users with Uncertainty

Our use of an MTurk sample suggests that even outside of educa-
tional contexts, graphical prediction may benefit non-expert users of
probability representations by engaging them to think more carefully
about uncertainty. For example, media reports on scientific results of-
ten reference readers’ prior knowledge to engage their interest [61].
However, cuing readers to think about their own everyday contexts
can motivate the use of heuristics over analytical reasoning [37] as
cited in [61], making readers more likely to overlook uncertainty in
reported studies. Asking users to make a prediction may provide
a means of leveraging the natural curiosity stimulated by engaging
one’s prior knowledge while emphasizing uncertainty. Simulations
of uncertain processes have also appeared in popular interactives as
a means of making complex sampling processes more understand-
able [35, 38, 55]. The focusing effect of graphical prediction may
help simulation users understand what samples represent and how un-
certain processes produce probability distributions.

To help realize these applications, future work should explore the
larger design space of interactions with uncertainty representations.
For example, even oft-misunderstood representations such as error
bars representing confidence intervals may be better understood if
users are first given a chance to predict their length. Uncertainty-
related predictions could also be “gamified,” such that users receive
real or hypothetical rewards based on the accuracy of their predictions.

6.1.2 For Improving Scientific Reliability in HCI and Beyond

Future work should examine whether graphical prediction of uncer-
tainty can benefit users who have statistics experience, such as HCI
researchers, in line with the goals of the RepliCHI [66, 67] and trans-
parent statistics movements [39]. We suspect that many researchers
could benefit from graphical predictions as a way to focus more at-
tention on uncertainty in their own and others’ studies. For example,
readers of scientific publications could use interactive visualizations
to test their statistical understanding as they read about reported ef-
fects. Because making a prediction requires some prior knowledge,
graphical predictions may help nudge scientists towards considering
the weight of evidence in the literature (e.g. through meta-analysis);
Ioninidis has argued that scientists’ overinterpretation of the signifi-
cance of single studies has contributed to the replication crisis [34].

6.1.3 For Elicitation from Experts and Others

How to best elicit priors from experts, such as for Bayesian analyses
where prior expectations are critical [25], remains an open problem for
which few graphical interfaces have been evaluated [S1]. The results
of our interface study can inform further development of interactive
prior elicitation mechanisms. Our reasoning study with non-experts
suggests graphical prediction interfaces could also have value for eval-
uating statistical literacy. For example, whether a user constructs a
symmetric distribution, the moments of their distribution, and their
error over multiple prediction exercises could provide educators with
valuable information about probability distribution literacy.

7 CONCLUSION

We evaluated a novel graphical prediction technique that may help
people grasp uncertainty in experiment replications. Graphically pre-
dicting the replicability of an experimental effect led to more accurate
predictions of the replication uncertainty for a new study in a different
domain. We also found new benefits of discrete visualizations of prob-
ability: for improving recall of a probability distribution. Our results
motivate new applications in presenting uncertainty in ways that work
toward helping the general public better understand—and know when
to trust—scientific experiments.

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2743898, IEEE

Transactions on Visualization and Computer Graphics

REFERENCES

—

(1]

(2]

(3]

[4]

(5]
(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

G. Aisch, A. Cox, and K. Quealy. You draw it: How family income
predicts children’s college chances, 2015.

M. T. Battista. Spatial visualization and gender differences in high school
geometry. Journal for research in mathematics education, pages 47-60,
1990.

C. A. Behrens. Measuring the productivity of computer systems devel-
opment activities with function points. [EEE Transactions on Software
Engineering, 9(6):648, 1983.

S. Belia, F. Fidler, J. Williams, and G. Cumming. Researchers misunder-
stand confidence intervals and standard error bars. Psychological meth-
ods, 10(4):389, 2005.

D. Ben-Zvi and J. B. Garfield. The challenge of developing statistical
literacy, reasoning and thinking. Springer, 2004.

C. C. Bonwell and J. A. Eison. Active Learning: Creating Excitement
in the Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC,
1991.

G. L. Brase. Which statistical formats facilitate what decisions? the per-
ception and influence of different statistical information formats. Journal
of Behavioral Decision Making, 15(5):381-401, 2002.

G. L. Brase. Pictorial representations in statistical reasoning. Applied
Cognitive Psychology, 23(3):369-381, 2009.

S. Carter, M. Ericson, D. Leonhardt, B. Marsh, and K. Quealy. Budget
puzzle: You fix the budget, 2015.

K. Casler, L. Bickel, and E. Hackett. Separate but equal? a compar-
ison of participants and data gathered via amazon’s mturk, social me-
dia, and face-to-face behavioral testing. Computers in Human Behavior,
29(6):2156-2160, 2013.

B. Chance, R. del Mas, and J. Garfield. Reasoning about sampling distri-
bitions. In The challenge of developing statistical literacy, reasoning and
thinking, pages 295-323. Springer, 2004.

P. Clarke, D. S. Fu, A. Jakubovic, and H. C. Fibiger. Evidence that
mesolimbic dopaminergic activation underlies the locomotor stimulant
action of nicotine in rats. Journal of Pharmacology and Experimental
Therapeutics, 246(2):701-708, 1988.

E. T. Cokely, M. Galesic, E. Schulz, S. Ghazal, and R. Garcia-Retamero.
Measuring risk literacy: The berlin numeracy test. Judgment and Deci-
sion Making, 7(1):25, 2012.

M. Correll and M. Gleicher. Error bars considered harmful: Exploring al-
ternate encodings for mean and error. Visualization and Computer Graph-
ics, IEEE Transactions on, 20(12):2142-2151, Dec 2014.

L. Cosmides and J. Tooby. Are humans good intuitive statisticians after
all? rethinking some conclusions from the literature on judgment under
uncertainty. cognition, 58(1):1-73, 1996.

R. Cox. Representation construction, externalised cognition and individ-
ual differences. Learning and instruction, 9(4):343-363, 1999.

F. L. Craik, M. Naveh-Benjamin, G. Ishaik, and N. D. Anderson. Di-
vided attention during encoding and retrieval: differential control effects?
Journal of Experimental Psychology: Learning, Memory, and Cognition,
26(6):1744, 2000.

G. Cumming and N. Thomason. Statplay: Multimedia for statistical un-
derstanding, in pereira-mendoza (ed. In Proceedings of the Fifth Interna-
tional Conference on Teaching Statistics, ISI. Citeseer, 1998.

R. C. delMas, J. Garfield, and B. Chance. A model of classroom research
in action: Developing simulation activities to improve students’ statistical
reasoning. Journal of Statistics Education, 7(3), 1999.

G. T. Fong, D. H. Krantz, and R. E. Nisbett. The effects of statistical
training on thinking about everyday problems. Cognitive psychology,
18(3):253-292, 1986.

R. Garcia-Retamero and E. T. Cokely. Communicating health risks with
visual aids. Current Directions in Psychological Science, 22(5):392-399,
2013.

R. Garcia-Retamero and U. Hoffrage. Visual representation of statistical
information improves diagnostic inferences in doctors and their patients.
Social Science & Medicine, 83:27-33, 2013.

J. Garfield. The challenge of developing statistical reasoning. Journal of

Statistics Education, 10(3):58-69, 2002.

J. B. Garfield and 1. Gal. Assessment and statistics education: Current
challenges and directions. International Statistical Review, 67(1):1-12,
1999.

A. Gelman and D. Weakliem. Of beauty, sex, and power. American
Scientist, 97, 2009.

[26]

[27]

(28]
[29]

(30]

(31]
(32]

(33]

(34]
(35]
[36]

(37]
(38]

(39]

(40]

[41]

(42]

[43]
[44]
[45]

[46]
[47]

(48]

[49]

[50]

(51]

[52]

[53]

(54]

G. Gigerenzer and U. Hoffrage. How to improve bayesian reasoning with-
out instruction: frequency formats. Psychological review, 102(4):684,
1995.

D. G. Goldstein, E. J. Johnson, and W. F. Sharpe. Choosing outcomes ver-
sus choosing products: Consumer-focused retirement investment advice.
Journal of Consumer Research, 35(3):440-456, 2008.

D. G. Goldstein and D. Rothschild. Lay understanding of probability
distributions. Judgment and Decision Making, 9(1):1, 2014.

R. Hastie and R. M. Dawes. Rational choice in an uncertain world: The
psychology of judgment and decision making. Sage, 2010.

R. Hoekstra, R. D. Morey, J. N. Rouder, and E.-J. Wagenmakers. Robust
misinterpretation of confidence intervals. Psychonomic bulletin & review,
21(5):1157-1164, 2014.

U. Hoffrage and G. Gigerenzer. Using natural frequencies to improve
diagnostic inferences. Academic medicine, 73(5):538—40, 1998.

J. Huang, A. Sun, and F. Fessenden. Who needs a gps? a new york
geography quiz, 2015.

J. Hullman, P. Resnick, and E. Adar. Hypothetical outcome plots outper-
form error bars and violin plots for inferences about reliability of variable
ordering. PloS one, 10(11), 2015.

J. P. Joannidis. Why most published research findings are false. PLoS
Med, 2(8):e124, 2005.

N. Irwin and K. Quealy. How Not to Be Misled by the Jobs Report. The
New York Times, May 2014.

S. Joslyn and J. LeClerc. Decisions with uncertainty: the glass half full.
Current Directions in Psychological Science, 22(4):308-315, 2013.

D. Kahneman. Thinking, fast and slow. Macmillan, 2011.

J. Katz, W. Andrews, and J. Bowers. Elections 2014: Make your own
senate forecast, 2014.

M. Kay, S. Haroz, S. Guha, and P. Dragicevic. Special interest group
on transparent statistics in hci. In Proceedings of the 2016 CHI Confer-
ence Extended Abstracts on Human Factors in Computing Systems, pages
1081-1084. ACM, 2016.

M. Kay, T. Kola, J. Hullman, and S. A. Munson. When (ish) is my bus?
user-centered visualizations of uncertainty in everyday, mobile predictive
systems. Proc. CHI 2016, 2016.

Y.-S. Kim, K. Reinecke, and J. Hullman. Explaining the gap: Visualizing
one’s predictions improves recall and comprehension of data. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, 2017.

S. Kullback and R. A. Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79-86, 1951.

R. McElreath. glmer2stan (r package), 2014.

R. McElreath. Statistical rethinking: A Bayesian course with examples in
R and Stan, volume 122. CRC Press, 2016.

L. Micallef, P. Dragicevic, and J.-D. Fekete. Assessing the effect of visu-
alizations on bayesian reasoning through crowdsourcing. /EEE Transac-
tions on Visualization and Computer Graphics, 18(12):2536-2545, 2012.
J. D. Mills. Using computer simulation methods to teach statistics: A re-
view of the literature. Journal of Statistics Education, 10(1):1-20, 2002.
D. S. Moore. New pedagogy and new content: The case of statistics.
International statistical review, 65(2):123-137, 1997.

M. Moscovitch and F. I. Craik. Depth of processing, retrieval cues, and
uniqueness of encoding as factors in recall. Journal of Verbal Learning
and Verbal Behavior, 15(4):447-458, 1976.

H. M. Natter and D. C. Berry. Effects of active information processing
on the understanding of risk information. Applied Cognitive Psychology,
19(1):123-135, 2005.

R. E. Nisbett, D. H. Krantz, C. Jepson, and Z. Kunda. The use of statis-
tical heuristics in everyday inductive reasoning. Psychological Review,
90(4):339, 1983.

A. O’Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite,
D.J. Jenkinson, J. E. Oakley, and T. Rakow. Uncertain judgements: elic-
iting experts’ probabilities. John Wiley & Sons, 2006.

H. Pashler and E.-J. Wagenmakers. Editors’ introduction to the special
section on replicability in psychological science a crisis of confidence?
Perspectives on Psychological Science, 7(6):528-530, 2012.

G. J. Posner, K. A. Strike, P. W. Hewson, and W. A. Gertzog. Accommo-
dation of a scientific conception: Toward a theory of conceptual change.
Science education, 66(2):211-227, 1982.

F. Prinz, T. Schlange, and K. Asadullah. Believe it or not: how much can
we rely on published data on potential drug targets? Nature reviews Drug
discovery, 10(9):712-712, 2011.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2743898, IEEE
Transactions on Visualization and Computer Graphics

[55] K. Quealy and A. Cox. The first g.o.p. debate: Who’s in, who’s out and
the role of chance. The New York Times, July 2015.

[56] D. Schunk. Learning Theories: An Educational Perspective. Pearson,
2004.

[57] D. L. Schwartz and T. Martin. Inventing to prepare for future learn-
ing: The hidden efficiency of encouraging original student production
in statistics instruction. Cognition and Instruction, 22(2):129-184, 2004.

[58] C.J. Schwarz and J. Sutherland. An on-line workshop using a simple
capture-recapture experiment to illustrate the concepts of a sampling dis-
tribution. Journal of Statistics Education, 5(1), 1997.

[59] P. Sedlmeier. Improving statistical reasoning: Theoretical models and
practical implications. Psychology Press, 1999.

[60] P.Sedlmeier and G. Gigerenzer. Teaching bayesian reasoning in less than
two hours. Journal of Experimental Psychology: General, 130(3):380,
2001.

[61] P. Shah, A. Michal, A. Ibrahim, R. Rhodes, and F. Rodriguez. Chapter
seven-what makes everyday scientific reasoning so challenging? Psy-
chology of Learning and Motivation, 66:251-299, 2017.

[62] W.F. Sharpe, D. G. Goldstein, and P. W. Blythe. The distribution builder:
A tool for inferring investor preferences. preprint, 2000.

[63] A. D. Shaw, J. J. Horton, and D. L. Chen. Designing incentives for in-
expert human raters. In Proceedings of the ACM 2011 conference on
Computer supported cooperative work, pages 275-284. ACM, 2011.

[64] J.R. Spence and D. J. Stanley. Prediction interval: What to expect when
you’re expecting a replication. PloS one, 11(9):e0162874, 2016.

[65] S. Tak, A. Toet, and J. van Erp. The perception of visual uncertainty
representation by non-experts. Visualization and Computer Graphics,
IEEE Transactions on, 20(6):935-943, 2014.

[66] M.L. Wilson, W. Mackay, E. Chi, M. Bernstein, D. Russell, and H. Thim-
bleby. Replichi-chi should be replicating and validating results more:
discuss. In CHI'11 Extended Abstracts on Human Factors in Computing
Systems, pages 463—466. ACM, 2011.

[67] M. L. Wilson, P. Resnick, D. Coyle, and E. H. Chi. Replichi: the work-
shop. In CHI’13 Extended Abstracts on Human Factors in Computing
Systems, pages 3159-3162. ACM, 2013.

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



